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ABSTRACT 

We examine the dioptric power and transmitted wavefront of a contact lens as it releases its handling 
stresses.  Handling stresses are introduced as part of the contact lens loading process and are common across all 
contact lens measurement procedures and systems. 

The latest advances in vision correction require tighter quality control during the manufacturing of the 
contact lenses. The optical power of contact lenses is one of the critical characteristics for users. Power 
measurements are conducted in the hydrated state, where the lens is resting inside a solution-filled glass cuvette. In a 
typical approach, the contact lens must be subject to long settling times prior to any measurements. Alternatively, 
multiple measurements must be averaged. Apart from potential operator dependency of such approach, it is 
extremely time-consuming, and therefore it precludes higher rates of testing. 

Comprehensive knowledge about the settling process can be obtained by monitoring multiple parameters of 
the lens simultaneously. We have developed a system that combines co-aligned a Shack-Hartmann transmitted 
wavefront sensor and a time-domain low coherence interferometer to measure several optical and physical 
parameters (power, cylinder power, aberrations, center thickness, sagittal depth, and diameter) simultaneously. We 
monitor these parameters during the stress relaxation period and show correlations that can be used by 
manufacturers to devise methods for improved quality control procedures.   
 

1. Introduction 
A soft contact lens is a highly flexible object that can deform under minuscule forces.1,2 When placed into a 

test chamber (a cuvette), a soft contact lens undergoes continuous changes as it comes to an equilibrium. These 
changes result in noticeable differences in the optical properties, such as optical power, cylinder and other 
aberrations. The incorrect assessment of contact lenses during their production due to these induced stresses may 
result in significant product release issues. Many of the stresses induced onto a contact lens when worn on the eye 
correlate to the effects present in the off-eye measurement proces.3,4,5 

Source of stresses can be divided into stresses due to handling, and stresses due to the changing 
environment. Handling stresses include: 

• Removal of the contact lens from its package, and its transport through the air using a cotton swab 
or fingers, 

• Cleaning the lens, e.g. by rubbing the lens into the palm of a hand with a finger, 
• Placing the contact lens into the measurement cuvette. 

Inside the test chamber, the contact lens rests on the bottom surface, resembling an inverted bowl. 
Environmental stresses include:  

• Thermal shock when the temperature of the test chamber is different from that of the package, 
• Salinity shock, if the solution used in the test chamber is different from the packing solution, 
• Gravitational force acting on the resting lens, 
• Frictional force between the lens and the bottom glass surface, and 
• Suction force between the bottom glass surface and the lens. 

All of the listed sources of stress were induced or present throughout the testing processes in the data 
gathering phase of this paper.  For some of the tests, certain stresses were minimized, such as salinity changes, and 
for other tests certain stresses were emphasized, such as the stress induced by the cleaning process. 
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Figure 1: Test lenses 
 The test system consists of three coaxially aligned measurement modalities (Figure 2): a Shack-Hartmann 
wavefront sensor (SHWS), a vision camera, and a low coherence interferometer (LCI)6. This combined system 
employs two commercially available instruments, ClearWave and OptiGauge II, both manufactured by Lumetrics 
Inc. The integrated system has been assigned a working name of ClearWave Plus, and is used to measure the 
following parameters: 

1. Optical power 
2. Cylinder power 
3. Spherical aberration 
4. Other aberrations (e.g. coma, longitudinal spherical aberration) 
5. Diameter 
6. Center thickness 
7. Sagittal height  
8. Base curve (a calculation using diameter and sagittal height)7 

 

We have selected Nine soft contact lenses for three different manufacturers, Johnson & Johnson, Alcon, 
and Bausch +  Lomb (Figure 1).  In the rest of the article, lenses will only be identified by the numbers #1 through 
#9, assigned in a random fashion.   

2. Methods 
2.1       Testing and equipment 
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Table 1: Measurement system repeatability obtained by measuring rigid contact lens.  
Parameter Units Average St. dev. of 12 measurements

Sphere Diopters -2.199 0.0003

Cylinder Diopters -0.120 0.0003

Spherical aberration µm -0.176 9.9E-05

Center thickness µm 399 0.061

Sagittal height µm 3276 0.017

Diameter mm 9.744 0.006

 
A second experiment is performed to show system noise for a soft contact lens in solution.  Lens #9 was 

measured 12 times in quick succession and the standard deviation results are listed in Table 2.  This type of test is 
called “push button repeatability”, where quick consecutive measurements minimize contributions from any changes 
that may be occuring within the lens. 
 

Table 2: “Push-button” repeatability of 12 measurements of Lens #9 in solution. 
Parameter Units St. dev. of 12 measurements

Sphere Diopters 0.005

Cylinder Diopters 0.007

Spherical aberration µm 0.010

Center thickness µm 0.2

Sagittal height µm 0.001

Diameter mm 0.038

Base curve mm 0.039

 

3.2        Cleaning stress variability 
The test lenses were removed from their blister pack packaging and placed into capped glass vials. The 

capped glass vials were filled with Eye-Lotion buffered saline solution (BSS), part # CMH00074, lot RM15023. 
 The same solution is used to fill the test cuvette during measurements.  The lenses were soaked a minimum of 2 
hours in the BSS prior to any testing. Each lens was hand cleaned by rubbing it between the operator’s index finger 
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Figure 7: Lens #2 saline shock response 

 

 
Figure 8: Lens #8 saline shock response 

 
3.5 Thermal shock 
Thermal shock is induced by soaking a lens in 35.5° ±1° C saline bath for a minimum of 1 minute and then 

placing it into the test cuvette held at a room temperature, 21° ±3° C. Figures 9, 10 and 11 show measured 
parameters for lenses #3, #5 and #7 respectively, after these lenses were subject to the thermal shock. 
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Figure 9: Lens #3’s thermal shock response 

 

 
Figure 10: Lens #5’s thermal shock response 

 

 
Figure 11: Lens #7’s thermal shock response 
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The first two graphs in Figures 3, 5 and 6 show the presence of a correlation between sagittal depth and 
spherical equivalent power for all three contact lenses.  For lenses #1 - #6 the increase in the sagittal depth 
corresponds to the decrease in lens power (the lens has a negative power, therefore the positive change value 
corresponds to the weaker refractive power). For lenses #7 - #9 the increase in the sagittal depth corresponds to the 
increase in the lens’ negative power. Lenses #1-#3 exhibit stress release dynamics linear with time. It also appears 
that the equilibrium for these lenses is not reached after 30 minutes. We have monitored and observed continuous 
changes in these lenses for longer periods of time (overnight). We believe that the changing environment 
(temperature, humidity, solution evaporation) resulted in the detectable continuous changes for this lens material. 

The relaxation dynamics for lenses #4 - #9 is non-linear, showing different behavior at different periods of 
time, with changes slowing down toward the end of the measurement process.  

In the case where the negative power of the lenses increases with the increasing sagittal depth, one can 
argue that the shape of the lens becomes steeper thus increasing its refractive power. This hypothesis can be quickly 
checked using the Zemax meniscus lens model. The model shows that 0.6% reduction in both the anterior and 
posterior radii of curvatures corresponds to the maximum observed change (0.025 diopters) in the refractive power 
of the soft contact lens. For 7.8 mm radius of curvature such reduction corresponds to 47 microns (7.8 vs 7.753 
mm). This estimate is confirmed by observing similar changes in the base curve estimates (see Figure 4c).  

However, the refractive power of the lens is primarily dependent on the thickness distribution along the 
meridian of the contact lens. If the thickness of the lens is also affected by the stresses, where, for example, the lens 
swells on the periphery slower than in the center, the refractive power of the lens may decrease even if the sagittal 
depth increases. Future work will involve measuring thickness profile along the lens meridian and therefore 
obtaining more accurate estimates of the power change due to the changing physical parameters of the lens. 

It is also possible to argue that the measured power change is a measurement artifact due the shift of the 
apex of the lens away from the Shack-Hartmann sensor. However, the corresponding change in power would then be 
of the opposite direction than what’s shown in Figure 5b, for example.  In addition, Zemax analysis of the expected 
power change caused by such positional shift is nearly 100 times smaller than the corresponding spherical 
equivalent power change seen in Figure 5b. 

Saline shock reveals the largest differences between the three manufacturers.  For example, lenses #4 - #6 
changed so dramatically when placed into DI water, that it became impossible to measure these lenses.  Lenses #1 - 
#3 did not stabilize even 20 minutes after subject to the saline shock. Only lenses from one manufacturer (lenses #7 - 
#9) handles the saline shock relatively well, and stabilized around the 12 minute mark. 

Thermal shock acts similar on all lenses from different manufacturers. No significant trends noted in the 
relaxation dynamics, and all lenses stabilized after 20 minutes. The only notable variation was in lens #7, where 
diameter change required the lens be recentered, resulting in the data acquisition gap; after recentering lens #7 was 
stable. 
 5.      Conclusion 

Obtained relaxation data demonstrates relationships between the measured parameters. These relationships 
may be used to formulate quantitative predictions about the lenses over time.  Predictive relationships can be critical 
in the manufacturing process when developing statistical process controls.  Using predictive relationship formulas 
could potentially reduce the time and expenses associated with the quality control procedures. Each manufacturer’s 
materials have unique properties and respond very differently to the same stress stimulus. An individual approach is 
therefore required when developing such protocols. 
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