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ABSTRACT 

The design of a wavefront sensor may be determined by the lenslet array and camera selection. There are 
numerous different applications for these sensors, requiring widely differing dynamic range and accuracy.  
Performance metrics are needed to evaluate candidate designs and to compare results. We have developed a standard 
methodology for measuring the repeatability, accuracy and dynamic range of different wavefront sensor designs, 
and have experimentally applied these metrics to a number of different sensors� 
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1. INTRODUCTION 
As an alternative to interferometry, the Shack-Hartmann wavefront sensor is simple, compact, robust, and 

relatively vibration insensitive. It makes passive measurements of the incident light, can be arranged to and is 
wavelength-independent. These advantages have led to a large number of new applications that were previously 
much more expensive or difficult. 

The Shack-Hartmann wavefront sensor has been applied to adaptive optics for high-energy lasers and 
astronomy for many years.1  However, as the technology has matured, its techniques have been adapted to many 
other fields.  Early sensors based on crude lenslet arrays were found to be surprisingly accurate. This quickly led to 
the development of more sophisticated sensors focused around modern computers, CCD cameras, and micro-optics. 
One of the earliest applications was the measurement of high-speed dynamic phenomena such as turbulence or fluid 
motion.   But over time, applications in ophthalmology, quality laser beam measurement, optics testing, and optical 
system alignment have been introduced. 

The quality of the laser beam has been an important factor for many years. The Shack-Hartmann wavefront 
sensor has been applied to this problem because it provides a simultaneous phase and irradiance distribution 
measurement that does not rely on an external reference. Using this technique, the RMS wavefront error, beam 
Strehl ratio, and near and far-field propagation can be routinely measured. Even M2, along with other beam 
parameters, can be determined in a single measurement.2,3  

With the simple expedient of bouncing a light source from a surface, the metrology of the surface can be 
measured with the Shack-Hartmann wavefront sensor.  This has facilitated a number of other applications.4  
Geometry similar to that of an interferometer can readily be constructed to test flats, powered optics, and other 
elements. The Shack-Hartmann wavefront sensor can be built with a dynamic range hundreds or thousands of times 
larger than a conventional interferometer.  Because the sensor measures the incident light, transmissive elements can 
be measured directly, rather than indirectly. In some cases, this simplifies the measurement arrangement. 5 

One key example of these applications is the measurement of the aberrations of the eye. This field has been 
revolutionized in the last few years by the introduction of the Shack-Hartmann wavefront aberrometer. While these 
systems were initially very similar to those used for astronomical adaptive optics, they have become increasingly 
sophisticated.6,7 There are now various commercial instruments that are used to measure the eye and  even provide 
information that is used for custom Lasik or PRK.8 The new information about the higher order aberrations of the 
eye has significantly improved the results that are now routinely achieved by the Lasik and PRK procedures. 

One feature that makes the Shack-Hartmann wavefront sensor so useful is that the precision and accuracy can 
be scaled over a huge range through the choice of lenslet array and detector. For the ophthalmic applications, the 
accuracy does not typically need to be better than λ/10. However, the aberrations can easily be hundreds of waves. 
These sensors have been designed to handle measurements containing extremely large wavefront errors. On the 
other hand, there are applications that require extremely high accuracy yet do not have a requirement for large 
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dynamic range. An example of this is measurement of the nanotopography of silicon wafers used in the 
semiconductor industry. In this case, extremely small variations in the surface structure (with depths on the order of 
5–10 nm) can lead to a failure of the patterned device late in the manufacturing process.  Thus it is important to 
detect these in the silicon wafer substrate prior to fabrication. This requires extreme accuracy and large dynamic 
range due to the natural bow and warp of these very thin but large-diameter substrates.  A new Shack-Hartmann 
based nanotopography system has recently proven to be very effective at this type of measurement. 9 

For all of these instruments and applications, it is important to establish the precision, accuracy, and dynamic 
range of the different sensors. If a key advantage of this type of sensor is the scalability to different precision and 
accuracy, then we need methods for designing the sensor and for measuring the resulting performance. In this paper, 
we will introduce a basic design methodology, define the various terms, and show example methods for measuring 
the performance of Shack-Hartmann wavefront sensor systems. 

2. MEASUREMENT PRINCIPLES 
The basic geometry of a Shack-Hartmann* 

based sensor is described in Figure 1. The sensor 
consists of two basic parts: a lenslet array and a 
position-sensing detector. The Hartmann 
geometry is very similar to this except that a grid 
of holes replaces the lenslet array. The incoming 
light is dissected into a number of small samples 
by the lenslet array, which then focuses the light 
onto the detector array. A wide variety of 
methods for fabricating lenslet arrays have been 
used. Early examples were built through the 
juxtaposition of a number of small lenslets glued 
or fixed in an assembly. The use of binary optics 
and other micro-optics technology has greatly 
improved the accuracy, resolution, and fill factor 
of the lenslet array. There is a whole art devoted 
to the design, fabrication, and characterization of 
such elements10 that is beyond the scope of this 
paper. The lenslet array thus creates a number of separated focal spots of light on the detector. The key principle is 
that the position of these focal spots is directly related to the average wavefront slope across the lenslet. Thus a 
measurement of the focal spot position uniquely determines the wavefront slope for that sample if the other system 
parameters are known.  

A position-sensing detector determines the focal spot position. Commonly, a CCD detector is used for this 
purpose. This allows a flexible measurement since it allows even dynamic allocation of detector pixels to the focal 
spots. An algorithm that processes the detected image and locates the focal spots determines the focal spot position. 
The wavefront slopes are computed by comparison to a reference and the wavefront through reconstruction from the 
array of wavefront slopes. 

There are three basic steps to the analysis process: determination of the spot positions, conversion to wavefront 
slopes, and wavefront reconstruction.  

2.1. Spot position 
For a pixilated sensor, the location of the focal spots is determined from the light distribution on the detector 

array. For a sampled irradiance distribution with measured pixel intensities Eij, the spot positions xc,k and yc,k are 
commonly determined by the first moments: 

 

                                                 
* While we use the term Shack-Hartmann sensor, many other authors prefer to use the term Hartmann-Shack. This is strictly a choice of 
terminology. The authors think of this as the Shack modified Hartmann sensor, hence the Shack-Hartmann sensor. However, the chronological 
order would support Hartmann-Shack as the preferred term. While Hartmann dates from about 1900, the modern incarnation of this sensor, using 
a position sensitive detector and a lenslet array was introduced by Roland Shack and Ben Platt in 19711. 

Lenslet array

Incom ing wavefront

Focal spot

Detector array  

Figure 1 – Basic layout of Shack-Hartmann wavefront 
sensor. 
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where the index k is over the lenslet number with center position (xl, yl)k and the summation is taken over the 
pixels assigned to the lenslet k, in Area-of-Interest AOIk.

11 There are a number of variations to this, including 
thresholding or image deconvolution, that affect the accuracy of this determination. All of these methods result in 
the estimation of the position of the focal spots across the array. Quite often these techniques are called centroiding, 
with the focal-spot positions called the “centroids.”† One key objective of this paper is to detail methods that can be 
used to describe the precision and accuracy of these various centroiding methods. 

2.2. Wavefront slope 
The wavefront slope distribution is determined by comparison of the measured centroids to a reference 

wavefront. The reference can be determined only from the positions of the lenslet centers, but more commonly it is 
recorded using a reference wavefront measured with the wavefront sensor system. For a set of measured centroids 
(xc, yc)k and reference centroids (xr, yr)k, the wavefront slope distribution is: 
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where LH, the distance between the lenslet array and detector, is normally set to the lenslet focal length, f. 

2.3. Wavefront reconstruction 
The wavefront is related to the slope through the definition of the gradient: 
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Note that this equation describes the gradient of the wavefront in terms of the local derivatives. In a practical 
SHWFS, the local derivatives are approximated by the average over the lenslet area. For a large diameter lenslet this 
may be an additional source of error, which, in some situations, can be significant.12  See section 3.2.3 for more 
details. 

There are a number of different methods for reconstructing the wavefront from the slope measurements. Two 
basic types of methods are commonly used: zonal (direct numerical integration) and modal (polynomial fitting).13 
There are many different implementations of these integration methods described in the literature; two 
representative examples are given below. 

2.3.1. Zonal 
One method for reconstructing the wavefront is to write the wavefront gradients in terms of finite-differences 

and to numerically integrate the data. Since the integration is performed zone by zone (lenslet by lenslet), this is 
called the zonal method. The measured wavefront slopes can be approximated by the finite difference: 
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where 0, +1 and –1 subscripts describe the wavefront at the adjoining lenslet locations. The wavefront can be 
written: 

                                                 
† The mathematical definition of the centroid refers to the center of the distribution of the given shape with no variation in the weighting. Since 
the pixelized intensity is most often used as the weighting function, this is technically not quite the right term. However, the other common term, 
“center-of-mass” seems inappropriate as well given that there is no mass involved in any of the parameters. The term “centroid” in common use 
in the wavefront sensor literature refers to the spot positions determined through some numerical or analytic method. 
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This equation can be solved by marching through the data, through least-squares fitting or through iterative 
methods. The boundary conditions play an important part in the accurate determination of the wavefront from the 
slope data13. 

2.3.2. Modal 
In the modal reconstruction method, the wavefront is described in terms of functions that have analytic 

derivatives. The measured slope data is then fit to the derivative of these functions, allowing a direct determination 
of the wavefront from the fit coefficients. That is, if the wavefront at point (x,y) is written as an expansion in terms 
of polynomials Pm(x,y): 

∑
=

=
M

m
mm yxPCyxw

1

),(),(  (6) 

then the local wavefront slopes can be written as: 
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The sum-squares is written: 
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This can be minimized by setting: 
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and solving the resulting system of equations. In practice, the polynomials that are used are often orthogonal 
polynomials such as Zernike, or Tschebychev polynomials.  The non-orthogonal set of Taylor polynomials is also 
frequently used.  

 
 

3. SOURCES OF UNCERTAINTY 
There are several different sources of uncertainty and error in the wavefront sensor process. It is important to 

understand these different contributors in designing a system and in interpreting the results. Several authors have 
described the statistical uncertainty of a Shack-Hartmann wavefront sensor in various conditions.14,15  

3.1. Alignment and calibration 
Pfund et al16 have considered the various alignment and calibration effects that contribute to systematic errors of 

the system. The effect of lenslet rotation, tip, tilt, and other alignment effects were carefully considered. Several of 
these parameters were shown to have a significant effect on the accuracy of the measurements.  If the reference 
centroids are recorded using an ideal light source, it is possible to subtract some of these effects. This results from 
the fact that the measurements are essentially differential, so as long as the lenslet array rotation and alignment are 
preserved, there is little systematic error. However, lenslet array tip and tilt could significantly affect the system 
accuracy, so care is required to maintain proper lenslet array alignment, at least within mechanical tolerances. 
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One important parameter is the distance between the lenslet array and the detector. This distance must be 
precisely known to avoid a calibration offset. This can be calibrated by recording a number of known wavefronts 
and then comparing them against the measurement made by the WFS.  

3.2. Repeatability and accuracy of wavefront sensor numerical analysis 
The precision and accuracy of the wavefront sensor measurements in general are quite different. This depends 

upon the particular geometry of the lenslet array and detector combination.  

Precision is defined as the repeatability of the sensor. That is, given an unchanging incident wavefront, 
precision is the variation (usually expressed in terms of a root-mean-square value) in the resulting measurement. 
Finite precision comes about as a result of pixelization, detector signal to noise ratio, CCD readout noise, frame 
grabber line or synch jitter, and other random or time dependent effects.  

Sensor accuracy is defined as the ability of the sensor to measure a given known wavefront. Finite accuracy 
comes about as a result of finite pixelization, cross-talk between lenslets, out-of-range conditions, background light, 
spot motion during the exposure time, light incident during the CCD readout (for full-frame CCDs), and several 
other effects. 

It is quite important to distinguish between these two sources of uncertainty. For a wavefront sensor system 
where the focal spot covers a fairly small number of pixels, the repeatability can be quite good. For example, with a 
144 µm diameter, 8mm focal length lenslet array, the focal spot covers about 6×6 pixels. Even with an 8-bit CCD, 
the S/N is usually greater than 100:1. Since there are 36 pixels involved in the centroid calculation, the S/N of the 
centroid algorithm can be nearly 600:1. This leads (for this example) to a precision of better than 0.1 µm in 
estimating the location of the focal spot (about 1/100th of a pixel). 

However, this is only part of the story. With this same system, if the focal spot is moved systematically across 
the CCD, a systematic error of up to 2 µm (1/5th pixel) would be observed. This pattern is systematic for an 
individual focal spot, but varies randomly across the lenslet array due to a mismatch between the lenslet array 
spacing or alignment relative to the detector array. This limits the accuracy with which it is possible to make 
measurements of an unknown wavefront. 

In the following section we will attempt to identify several dominant sources of error and to develop 
nomenclature for describing these effects and modeling the system behavior.  

3.2.1. Centroid estimation error 
The centroid estimation error is the primary measure of the repeatability of the system. It is non zero due to the 

finite signal to noise of real detector systems and other errors, such as CCD readout noise or synch jitter17. A 
measure of the centroid estimation error can be obtained by recording a large sequence of measurements and then 
analyzing the centroid positions. For a sequence of N measurements, and a sensor with K lenslets: 
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which results in the standard deviation of the centroids. This formula assumes that the x and y centroids, and the 
individual measurements in the sequence are statistically independent. In practice, this is not quite true due to the 
variation in the way the focal spots are sampled across the lenslet.  Also it assumes that the statistical variations 
related to the instrument, and not to turbulence or other experimental setup effects. 

3.2.2. Centroid pixelization error 
Pixelization error is defined as the error caused by reducing the real irradiance distribution of each focal spot to 

a series of discrete measurements that represent the integral of the irradiance distribution over finite boundaries.  
This results in a loss of information which cannot be recovered18.  This error is not dependent upon the signal-to-
noise ratio of each individual element, but upon the sampling of the focal spot.  For Shack-Hartmann sensors it is 
often the limiting factor on the total accuracy.  To evaluate this error, the estimated position is compared to the real 
position of an ideal spot.   
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( )22 ˆ IPx xx −=σ  (11) 

where the pixelization error σpx is determined by varying the focal spot locations xI in a known way and 
comparing against the estimated centroid locations x.  

In general this error may be a function of the actual centroid location.   

The pixelization factor is defined as: 

υ
σ Px

pK =  (12) 

 

3.2.3. Fitting error 
The key assumption that underlies the 

wavefront sensor is that the wavefront is well 
represented by a piecewise planar 
approximation.  This is because a lenslet 
measures the average wavefront slope across 
its aperture. 

For a real wavefront, there is a fitting 
error between the piecewise planar 
approximation and the actual wavefront 
surface.  Figure 2 shows an example of this 
effect.  In Figure 2(a) the wavefront is very 
poorly approximated by the very low 
resolution lenslet array (3 lenslets across the 
aperture).   There is a large fitting error 
between the actual wavefront and the lenslet 
array estimate.  In Figure 2(b), however, 
there are 33 samples across the same 
wavefront.  In this case the difference 
between the incident wavefront and the 
measured wavefront is insignificant.  In 
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Figure 2 – Planar approximation of a wavefront in two dimensions.  A slice of a sample wavefront is presented at two 
sample densities. The input wavefront is compared against the planar approximation made by the lenslet. For low 
sample densities, the wavefront is not approximated very well. For high sample densities the approximation is quite 
good. 
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Figure 3 – Focal spot quality as a function of lenslet resolution. 
The sample wavefront shown in the previous figure was used as an 
input function. The planar approximation was compared to the 
input wavefront by computing the root mean square of the 
difference between the blue and the red lines across each sample. 
Here the RMS error in waves and corresponding value for the 
Strehl intensity are shown. 
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Figure 3 this RMS difference is plotted as a function of the number of samples across the wavefront shown in Figure 
2. 

There is an additional effect for the case where the fitting error is large (i.e. a significant fraction of a wave).  In 
this case the focal spot itself is degraded to the point where the centroid calculation suffers additional error.  Also 
presented in Figure 3 is the resulting Strehl ratio of the focal spot.  For this case, less than about 20 lenslets across 
the wavefront under test results in a significant reduction in the focal spot Strehl. 

The errors associated with this effect are difficult to evaluate since they are wavefront dependent. 

3.2.4. Gradient errors 
While the essential information is obtained from the centroid locations, it is useful to define the errors in terms 

of the calculated wavefront gradients.  In Eq. 2, while the fundamental aspects for determining the centroids arrive 
through the same calculation methods, the error is not the same for each term.  Applying the method of variations to 
Eq. 2 results in: 
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where the last term has been 
neglected, since it represents a 
calibration error and not a 
measurement error.  For a given 
measurement using the wavefront 
sensor, these terms are not 
necessarily equal.   

An accurate reference wave is 
an integral part of determining the 
accuracy of the sensor.  To this end 
it is important to provide known 
reference waves.  Typically an 
average is recorded over a fairly 
large number of frames.  The 
accuracy of this reference wave depends upon the same factors as the other centroid estimation parameters.   If the 
reference wave is recorded from a single frame of data, then the error terms in Eq. 13 are roughly equal.  However, 
averaging over a large number of frames can result in a significant reduction in the second term, thereby reducing 
the total error nearly in half.  Only the statistical fluctuation of the focal spot positions is important for the reference 
since any systematic effects, the result of any systematic differences in the reference centroid positions due to errors 
in the lenslet or detector array, are subtracted through the use of the difference in Eq. 2. 

For sensors built around digital cameras with square pixels, the x- and y-directions are not generally different in 
the statistics of the error, and each focal spot results in (generally) statistically independent measurement of the x- 
and y- focal spot positions.  For other cameras, due to differences in the pixel size or synchronization, these effects 
may be different. The RMS gradient error is defined as: 
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The centroid estimation accuracy can be written in terms of this parameter as: CEA=βRMS f. 

3.2.5. Reconstructor noise factor 
The wavefront slopes represent a wavefront surface with the addition of some finite amount of noise.  The 

reconstructor can have the effect of damping this noise (through an averaging or fitting process) or of amplifying it.  
Thus the reconstructor factor is defined as how much the per lenslet wavefront error due to the centroiding and other 
factors is amplified or damped by the reconstructor.  Hence a  reconstructor factor can be defined as: 
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Figure 4 –Experimental layout for measuring precision and accuracy of 
wavefront sensors. 
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where wRMS is the wavefront error RMS (usually with tilt removed) obtained from the reconstructed wavefront. 

This model characterizes the way a given reconstructor amplifies the noise.  Analysis of any given reconstructor can 
result in a measure of this factor and for scaling as a function of the number of samples13.   

4. MEASUREMENT OF WAVEFRONT 
SENSOR PERFORMANCE 

These various factors can be measured for any given 
combination of lenslet array and detector.  In this section 
experimental results will be presented for several different 
detector combinations.  Three different sensor 
configurations were evaluated with a common camera as 
the detector element (Digital 10-bit Cohu 6612 with 
640×480 9.9 µm pixels).  The lenslet arrays had a 
constant Fresnel number (NF=d2/fλ) of 4.0, with the 
combinations f/d:  8.19/0.144, 2.05/0.072, and 
25.09/0.252 (mm/mm).  

4.1. Performance measurement methodology 
The experimental setup is shown in Figure 4.  A 

single mode fiber was used as a point source with a 500-
mm focal length collimating lens (CVI AAP-500-101.6).  
The focal length of this lens is long enough that the 
irradiance distribution was extremely uniform over the 
entire lenslet array.  For the precision measurements, the fiber position was set for best collimation and zero tilt.  For 
the accuracy measurements the position of the fiber was controlled using a computer-controlled stage that had 
position accuracy of 1 µm.  This allowed tilt to be introduced in a precisely known manner and facilitated automated 
acquisition of multiple frames of data.  The apparatus was completely enclosed to minimize air turbulence during 
data acquisition. 

4.1.1. Centroid Estimation Error 
To measure the repeatability (or centroid estimation 

error) the fiber source was arranged at the point of best 
collimation and no tilt.  This position was used for recording 
both the reference wave and the measurement data.  The 
reference wave was constructed by recording and averaging 
100 frames of data.  All data analysis was performed using 
an 11% threshold to calculate the centroid in each AOI.   

In Figure 5, a plot of the RMS Gradient as a function of 
time is presented.  This is the measured slope error that is 
calculated using Eq. 2.  While this plot shows the total 
gradients RMS values, it includes the errors in both the 
measurement frames and the reference frames.  However, 
since only the difference is recorded for each frame, the 
exact distribution was not actually measured for this case.  
However, the reference, being obtained from a 100-frame 
average, has a very small contribution to the error in this 
case.  Thus all of the error can be assigned to the 
measurement frames with little error, giving a centroid 
estimation error, ν, of 0.066 µm.  The pixels for this camera 
are 9.9 µm square, so this represents 1/150th of a pixel. 
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Figure 5 -  RMS centroid locations (compared to 
the reference location, taken as the reference) (x and 
y) for a sequence of static measurements.  The 
average is 0.0047 µm. 
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Figure 6 – Measured average tilt as a function of input 
tilt.  This sensor is accurately calibrated, with a slope 
error of less than 0.2% 
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This is the repeatability for this system.  It depends 
upon the number of digitization bits in the camera (10 for 
this case), the camera noise, readout noise and other 
statistical factors.  The precision for this sensor is directly 
related to this quantity. 

4.1.2. Pixelization factor 
To determine the accuracy, it is necessary to vary 

some parameter in a known fashion.  Using the apparatus 
of Figure 4 it is possible to vary the tilt in a systematic 
and rigorous manner.  Figure 6 shows the resulting 
average tilt when the input tilt was varied in the x-
direction.  This sensor is accurately calibrated, with a 
slope error of 0.2%.  Figure 7 shows the residual RMS 
error after subtracting the average tilt from each 
measurement.  This plot shows that the error increased 
about three times compared to Figure 5.  Clearly the 
addition of tilt has affected the accuracy of the 
measurement.  For this sensor, once the tilt is sufficient to 
move the focal spot a significant fraction of a pixel, the 
RMS centroid error greatly increases.  In this case a tilt 
sufficient to move the focal spot by one complete pixel is 
1.27 mr.   In Figure 7, this periodicity is evident in the x-
component of the RMS values.  The finite pixels sampling 
of the focal spot leads to different centroid results 
depending upon the exact alignment of the focal spot light 
with the camera pixels.   

The reason for this becomes clear if the individual 
pixel samples are examined.  Figure 10 shows the pixel 
values (for the same data as in Figure 7) as the focal spot 
is moved in ¼ pixel increments.  Initially, the brightest 
two pixels appear to have almost the same value, with a 
slightly higher value on the right side of the peak.  As the 
focal spot moves (to the left) it is sampled differently.  So 
the distribution of values changes.  In the 0.3 mr case the 
values are nearly equal.  The 0.6 mr case is approximately 
½ pixels, and the central brightest pixels have reversed, 
with the brightest now on the left.  As the focal spot 
continues to move to the left it cyclically moves through 
the various patterns, repeating after one full pixel.  The 
peak intensity will also vary slightly.  For low-resolution 
systems (as compared to the focal spot) this pixelization 
effect becomes more pronounced, to the point where it 
can dominate the accuracy of the measurement.  Even for 
this relatively well sampled array it is the dominant effect.  
Comparing Figure 7 and Figure 5, it is apparent that the 
RMS centroid error is 1.75 times larger except where the 
tilt is nearly zero.  This effect is reduced for larger number 
of pixels across the focal spot, and enhanced for lower 
number.  Since this is nearly constant for many sensors, 
this can be used to describe the accuracy compared to the 
precision of the sensor. 
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Figure 7 – Residual RMS gradients (after removing 
the average tilt) for different input tilt values. 
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Figure 8  - Centroid estimation error for 2 mm 
wavefront sensor. 
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Figure 9 – Slope error for a 25 mm focal length 
lenslet array 
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While the reduction in accuracy due to pixelization is 
evident for the moderate resolution sensor of Figure 5, which has 
moderate resolution, for a lenslet array which covers a fewer 
number of pixels the effect is much stronger.  In Figure 8, a 
lenslet array with half the lenslet size is shown.  In this case the 
number of pixels under the focal spot is also ½ the number of the 
previous figures (in each direction).  The effect is a strong 
periodic variation in the RMS wavefront error as the input tilt 
was varied.  The periodicity is given by the pixel spacing of the 
camera.  The accuracy is much worse than the precision, with 
the peak centroid estimation error 6.7 times worse than the 
precision and the average of 4.1 times larger.  In fact, the ratio of 
the maximum to the minimum values in Figure 8 is about 25.  
The large variation in the gradient error as a function of tilt 
means that it is difficult to evaluate this sensor with zero tilt.  
Thus the repeatability is not measured with successive 
measurements near the minimum in the gradient error curve, but 
at some point slightly different than zero.  Since the curve varies 
rapidly, any small variations in the true input tilt (caused by a 
slight amount of turbulence in the lab, or alignment drift) will 
result in a large average repeatability value, and hence lead to 
lower overall precision metrics.  This, however, is an accurate 
assessment of the difficulty in making accurate and precise 
measurements with this very short focal length wavefront sensor.  
For this sensor it is still easy to achieve very good repeatability, 
but it does not have very good accuracy.  However, this 
particular sensor has significantly more dynamic range.  Both the 
number of lenslets is double in each direction and the angular 
dynamic range per lenslet is greater.   Both of these factors 
contribute to the total wavefront error for the sensor. 

As a final comparison, the gradient estimation error is 
shown for another sensor configuration using a 25 mm focal 
length, 0.252 mm diameter lenslet array.  In this case, the focal 
spot covers three times as many pixels as in Figure 5.  In this 
case one pixel corresponds to 0.39 mr.  The RMS Gradient error 
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Figure 10 - Pixelization of focal spot as it 
moves across the detector.  The pattern repeats 
every 1.21 mr.  The lenslet is 8.19 mm focal 
length, and 0.144 mm diameter. 
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Figure 11 – Reconstructed wavefront RMS error for the 8.19 
mm sensor. 
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is maximum at 8 µr.   However, the 
pixelization factor is still roughly the same at 
3.96. 

4.1.3. Reconstructor factor 
Another factor that is important to 

measure is the effect of reconstructing the 
wavefront from the gradient measurements.  If 
this serves to amplify the noise or attenuate it, 
then the reconstructor must be taken into 
account when evaluating the system 
performance. 

The data of Figure 7 was reconstructed 
using the zonal reconstruction method of Eq. 4 
and 5.  The residual wavefront error (with tilt 
removed) is shown in Figure 11.  In this plot 
both the peak-to-valley and RMS values are 
shown.  Compared to Figure 7, the RMS error 
increases continuously with tilt, with up to a 
factor of five reduction of accuracy near the 
limits of the dynamic range for this sensor. 

It is interesting to note that the RMS wavefront error curve in Figure 11 does not follow the shape of the 
gradient error or centroid error curves (as shown in Figure 7).  This is because the errors are not random, but 
correlated.  The reconstructor can either attenuate or amplify these errors.  However, for correlated errors, the 
response of the reconstructor depends upon the details of the correlated inputs.  Thus the shape of the curve in 
Figure 11 differs from Figure 7 due to the particular correlation in the measurements. 

The reconstructor and pixelization factors are shown in Figure 12 for the 8.19/0.144 mm sensor, as defined in 
Equations 12 and 15.  It is evident that, for this particular combination of sensor elements, the pixelization factor is 
fairly constant over the range of measurements.  However, the reconstructor factor follows more closely the RMS 
wavefront error plot of Figure 11.  This indicates that the error model introduced in Equation 15 does not include all 
of the relevant phenomenon.  However, the average of this factor (over all measurements that are within the 
specified dynamic range) is still a good indication of the average performance of the sensor.  For this case the 
average reconstructor factor is  about 1.8. 

4.2. Lenslet array scaling 
To develop scaling laws for use in designing new lenslet array/camera combinations, it is useful to determine 

how these error terms vary as a 
function of lenslet parameters.  To 
this end, a number of different 
sensors were constructed using the 
same camera (Digital 10-bit Cohu 
6612 with 640×480 9.9 µm pixels).  
Several different lenslet arrays 
were tested for accuracy and 
precision using the setup of Figure 
4.  These lenslet arrays had a 
constant design Fresnel number, 
NF=d2/fλ = 4.0 for all the arrays. 

Table 1 presents a summary of 
these results for a few different lenslet arrays. In this table, two different 8.19 mm lenslets are shown to show 
repeatability of the accuracy measurement. 
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Figure 12 – Accuracy factors for the f = 8.19 mm, d = 0.144 mm 
wavefront sensor. 

Lenslet Focal Length m m  2.047 8.189 8.189 25.086

Lenslet Size m m  0.072 0.144 0.144 0.252

Centroid Estim ation Error (um ) um  0.160 0.049 0.066 0.065

Centroid Accuracy um  0.757 0.201 0.167 0.250

RM S W FE per Lenslet um  0.0266 0.0025 0.0029 0.0025

Pixelization Factor   4.1 2.9 2.5 3.8

Average Recon Factor (zonal)   0.7 1.8 1.3 0.9

Table 1 – Comparison of the performance for several different wavefront 
sensors with Fresnel number = 4.0. 
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The total centroid estimation error and centroid accuracy error are shown in Figure 13. While there is a dramatic 
decrease in the error between the 2 mm and 8.19 mm sensors, the centroid estimation errors are about the same (or 
slightly increased) for the 25 µm sensor. This is surprising considering that the lenslet array has both three times as 
many pixels and three times the focal length. The resulting wavefront error, as shown in Figure 14, does decrease, 
but not nearly as much as would be expected by the increased focal length. However, the resulting total RMS 
wavefront error is extremely small for the long focal length lenslet arrays. Thus other errors, such as errors in the 
test wavefront caused by diffraction from dust or fabrication errors, would be expected to have a larger effect. In 
fact, some such errors were apparent in the data for the 25 mm focal length sensor. 

5. CONCLUSIONS 
We have identified a method for measuring the performance of different wavefront sensors and for making 

comparisons of different designs. The average performance was evaluated over the dynamic range of each sensor 
and average performance metrics identified. Key parameters such as centroid estimation error, centroid estimation 
accuracy, and RMS wavefront error were identified. 

For short focal length lenslet arrays the pixelization can be the dominant factor in the overall accuracy. 
However, other factors play a role for sensor with a longer lenslet focal length. 

These results will help with the development of scaling laws for the design of new sensors and for comparison 
of the performance of various different wavefront sensor designs. 
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different focal length lenslet arrays with NF = 4.0. 
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